HOMEWORK 9 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 4.2: The Mean Value Theorem

4.2.6. $f(0)=f(\pi)=0$, but $f^{\prime}(x)=\sec ^{2}(x)>0$. This does not contradict Rolle's Theorem because f is not continuous on $[0, \pi]$ (it is discontinuous at $\frac{\pi}{2}$.
4.2.13. f is differentiable on $[0,3] ; c=-\frac{1}{2} \ln \left(\frac{1-e^{-6}}{6}\right)$ (you get this by solving $-2 e^{-2 c}=\frac{e^{-6}-1}{3}$.
4.2.18. Let $f(x)=2 x-1-\sin (x)$

At least one root: $f(0)=-1<0$ and $f(\pi)=2 \pi-1>0$ and f is continuous, so by the Intermediate Value Theorem (IVT) the equation has at least one root.

At most one root: Suppose there are two roots a and b. Then $f(a)=f(b)=0$, so by Rolle's Theorem there is at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$. But $f^{\prime}(c)=2-\cos (c) \neq 0$, which is a contradiction, and hence the equation has at most one root.
4.2.23. By the MVT, $\frac{f(4)-f(1)}{4-1}=f^{\prime}(c)$ for some c in $(1,4)$. Solving for $f(4)$ and using $f(1)=10$, we get $f(4)=3 f^{\prime}(c)+10 \geq 6+10=16$.
4.2.29. This is equivalent to showing:

$$
\left|\frac{\sin (a)-\sin (b)}{a-b}\right| \leq 1
$$

Which is the same as:

$$
\left|\frac{\sin (b)-\sin (a)}{b-a}\right| \leq 1
$$

Which is the same as:

$$
-1 \leq \frac{\sin (b)-\sin (a)}{b-a} \leq 1
$$

But by the MVT applied to $f(x)=\sin (x)$, we get:

$$
\frac{\sin (b)-\sin (a)}{b-a}=\cos (c)
$$

for some c in (a, b). However, $-1 \leq \cos (c) \leq 1$, and so we're done!

[^0]4.2.32. Let $f(x)=2 \sin ^{-1}(x), g(x)=\cos ^{-1}\left(1-2 x^{2}\right)$.

Then $f^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}$ and:
$g^{\prime}(x)=-\frac{-4 x}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}=\frac{4 x}{\sqrt{1-1+4 x^{2}-4 x^{4}}}=\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=\frac{4 x}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}}=f^{\prime}(x)$
(you get this by factoring out $4 x^{2}$ out of the square root. This works because $x \geq 0$)

Hence $f^{\prime}(x)=g^{\prime}(x)$, so $f(x)=g(x)+C$
To get C, plug in $x=0$, so $f(0)=g(0)+C$. But $f(0)=g(0)=0$, so $C=0$, whence $f(x)=g(x)$
4.2.34. Let $f(t)$ be the speed at time t. By the MVT with $a=2: 00$ and $b=2: 10$, we get:

$$
\frac{f(2: 10)-f(2: 00)}{2: 10-2: 00}=f^{\prime}(c)
$$

But 2: $10-2: 00=10$ minutes $=\frac{1}{6} \mathrm{~h}$, so:

$$
\frac{50-30}{\frac{1}{6}}=f^{\prime}(c)
$$

Whence: $f^{\prime}(c)=120$ for some c between 2:00 pm and 2:10 pm. But $f^{\prime}(c)$ is the acceleration at time c, and so we're done!

Section 4.3: How derivatives affect the shape of a graph

4.3.9.

(a) $f^{\prime}(x)=6 x^{2}+6 x-36=6(x-2)(x+3)$; \nearrow on $(-\infty,-3) \cup(2, \infty)$, \searrow on $(-3,2)$
(b) Local max: $f(-3)=81$; Local min: $f(2)=-44$
(c) $f^{\prime \prime}(x)=12 x+6$; CU on $\left(-\frac{1}{2}, \infty\right)$, CD on $\left(-\infty, \frac{-1}{2}\right)$, IP $\left(-\frac{1}{2}, f(-0.5)=\frac{37}{2}\right)$

4.3.13.

(a) $f^{\prime}(x)=\cos (x)-\sin (x) ; \nearrow$ on $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, \infty\right), \searrow$ on $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
(b) Local max: $f\left(\frac{\pi}{4}\right)=\sqrt{2}$; Local min: $f\left(\frac{5 \pi}{4}\right)=-\sqrt{2}$
(c) $f^{\prime \prime}(x)=-\sin (x)+\cos (x)$; CU on $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$, CD on $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$, IP $\left(\frac{3 \pi}{4}, 0\right),\left(\frac{7 \pi}{4}, 0\right)$

4.3.43.

(a) $f^{\prime}(\theta)=-2 \sin (\theta)-2 \cos (\theta) \sin (\theta)=-2 \sin (\theta)(1+\cos (\theta)) ; ~ \nearrow$ on $(\pi, 2 \pi)$, \searrow on $(0, \pi)$
(b) Local min: $f(\pi)=-1$, no local max.
(c) $f^{\prime \prime}(x)=-2 \cos (\theta)+2 \sin ^{2}(\theta)-2 \cos ^{2}(\theta)=-2 \cos (\theta)+2-4 \cos ^{2}(\theta)=$ $-4\left(\cos ^{2}(\theta)-\frac{\cos (\theta)}{2}-\frac{1}{2}\right)=-4(\cos (\theta)+1)\left(\cos (\theta)-\frac{1}{2}\right) ; \mathrm{CU}$ on $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right), \mathrm{CD}$ on $\left(0, \frac{\pi}{3}\right) \cup\left(\frac{5 \pi}{3}, 2 \pi\right)$, $\operatorname{IP}\left(\frac{\pi}{3}, \frac{5}{4}\right),\left(\frac{5 \pi}{3}, \frac{5}{4}\right)$
4.3.45.
(a) Vertical Asymptotes: $x=-1, x=1$; Horizontal Asymptote: $y=1$ (at $\pm \infty)$
(b) $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}} ; \nearrow$ on $(-\infty,-1) \cup(-1,0)$, \searrow on $(0,1) \cup(1, \infty)$ (remember that f is not defined at ± 1)
(c) Local max: $f(0)=0$; No local min
(d) $f^{\prime \prime}(x)=\frac{-2\left(x^{2}-1\right)^{2}+(2 x)(2)\left(x^{2}-1\right)(2 x)}{\left(x^{2}-1\right)^{4}}=\frac{6\left(x^{2}-1\right)\left(x^{2}+\frac{1}{3}\right)}{\left(x^{2}-1\right)^{4}} ; \mathrm{CU}$ on $(-\infty,-1) \cup$ $(1, \infty), \mathrm{CD}$ on $(-1,1)$, No inflection points.
4.3.51.
(a) Vertical Asymptote: $x=-1$; Horizontal Asymptote: $y=1$ (at $\pm \infty)$
(b) $f^{\prime}(x)=\frac{1}{(x+1)^{2}} e^{-\frac{1}{x+1}} ; \nearrow$ on $(-\infty,-1) \cup(-1, \infty)$ (remember f is not defined at -1)
(c) No local max/min
(d) $f^{\prime \prime}(x)=\frac{-2}{(x+1)^{3}} e^{-\frac{1}{x+1}}+\frac{1}{(x+1)^{4}} e^{-\frac{1}{x+1}}=\frac{-2 x-1}{(x+1)^{4}} e^{-\frac{1}{x+1}} ; \mathrm{CU}$ on $(-\infty,-1) \cup$ $\left(-1,-\frac{1}{2}\right), \mathrm{CD}$ on $\left(-\frac{1}{2}, \infty\right), \mathrm{IP}=\left(-\frac{1}{2}, \frac{1}{e^{2}}\right.$.

Section 4.4: L'Hopital's Rule

4.4.3.

(a) No, $-\infty$
(b) Yes, $\infty-\infty$
(c) No, ∞

4.4.4.

(a) Yes, 0^{0}
(b) No, 0
(c) Yes, 1^{∞}
(d) Yes, ∞^{0}
(e) No, ∞
(f) Yes, ∞^{0}
4.4.11.

$$
\lim _{t \rightarrow 0} \frac{e^{t}-1}{t^{3}}=\lim _{t \rightarrow 0} \frac{e^{t}}{3 t^{2}}=\lim _{t \rightarrow 0} \frac{e^{t}}{6 t}=\lim _{t \rightarrow 0} \frac{e^{t}}{6}=\frac{1}{6}
$$

4.4.15.

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

4.4.23.

$$
\lim _{x \rightarrow 0} \frac{\tanh (x)}{\tan (x)}=\lim _{x \rightarrow 0} \frac{\operatorname{sech}^{2}(x)}{\sec ^{2}(x)}=1
$$

4.4.27.

$$
\lim _{x \rightarrow 0} \frac{\sin ^{-1}(x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-x^{2}}}}{1}=1
$$

4.4.29.

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2}=\frac{1}{2}
$$

4.4.40.

$$
\lim _{x \rightarrow-\infty} x^{2} e^{x}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}}=\lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}}=\lim _{x \rightarrow-\infty} \frac{2}{e^{-x}}=0
$$

4.4.47.

$\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln (x)}=\lim _{x \rightarrow 1} \frac{x \ln (x)-(x-1)}{(x-1) \ln (x)}=\lim _{x \rightarrow 1} \frac{\ln (x)+1-1}{\ln (x)+1-\frac{1}{x}}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\frac{1}{2}$

4.4.51.

$$
\lim _{x \rightarrow \infty} x-\ln (x)=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln (x)}{x}\right)=\infty \times(1-0)=\infty
$$

4.4.56.

1) Let $y=\left(1+\frac{a}{x}\right)^{b x}$
2) $\ln (y)=b x \ln \left(1+\frac{a}{x}\right)$
3)

$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{a}{x}\right)}{\frac{1}{b x}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+\frac{a}{x}}\right)\left(-\frac{a}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)\left(\frac{1}{b}\right)}=\lim _{x \rightarrow \infty} \frac{a b}{1+\frac{a}{x}}=a b$
4) So $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=e^{a b}$

4.4.59.

1) Let $y=x^{\frac{1}{x}}$
2) Then $\ln (y)=\frac{\ln (x)}{x}$
3) So $\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0$
4) Hence $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=\lim _{x \rightarrow \infty} y=e^{0}=1$

[^0]: Date: Friday, April 1st, 2011.

